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Goal of this series of talks

The goal of this talk is threefold

Free objects and their combinatorics

A bit of category theory: How to construct free objects w.r.t. a functor
and two routes to reach the free algebra.

CRT ?

Representation theory: Categories of modules, semi-simplicity,
isomorphism classes i.e. the framework of Kronecker coefficients

MRS and apps

MRS factorisation: A local system of coordinates for Hausdorff groups
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CCRT[8]: Free structures without functors and Free
differential objects.
Useful categories/1

Below a quick list of the categories of use in combinatorics (k is a given
field), morphisms are standard.

1 St, the category of sets

2 Mon, the category of monoids

3 CMon, the category of commutative monoids

4 Gp, the category of groups

5 Ring, the category of rings

6 CRing, the category of commutative rings

7 Vectk, the category of k-vector spaces

8 Liek, the category of k-Lie algebras

9 AAUk, the category of k-Associative Algebras with Unit

10 CAAUk, the category of k-Associative and Commutative Algebras
with Unit
Mg, the category of Magmas i.e. sets with only a binary law (without
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Useful categories/2

12 Algk, the category of k-Algebras (without conditions)

13 DiffAlgk, the category of k-Associative Differential Algebras with
Unit.

14 CDiffAlgk, the category of k-Associative Commutative Differential
Algebras with Unit.

15 DiffRing, the category of Differential rings.

16 CDiffRing, the category of Commutative Differential Rings.

Remarks. –
i) All of these have a standard forgetful functor to St. They usually
compose and factor nicely. See also [20].
ii) For k = Z, one has

DiffAlgZ = DiffRing and CDiffAlgZ = CDiffRing.
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The categories DiffRing,CDiffRing,DiffAlgk,CDiffAlgk

1 We begin with DiffAlgk
Let k be a ring DiffAlgk is the category of pairs (A, ∂) where
A ∈ AAUk and ∂ ∈ Der(A). An arrow f : (A, ∂A) → (B, ∂B) is an
arrow f ∈ Homk(A,B) such that f ∂A = ∂B f .

2 For (A, ∂A) ∈ DiffAlgk, ker(∂A) is a k-subalgebra of A called that of
constants of A.

We now describe the free objects

St DiffAlgk

X A

k〈{X}〉

F

f

jX f̂

Figure: A solution of the universal problem w.r.t. the natural forgetful functor
from DiffAlgk to St.
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Construction of k〈{X}〉 and k{X}

1 We describe the structure. Let X be an alphabet.
The free object k〈{X}〉 is:

1 a free algebra k〈X × N〉 where, for all x ∈ X , is noted (x , n) = x [n]

and, for convenience, x [0] = x . This algebra is equipped with the
derivation ∂ such that ∂(x [k]) = x [k+1]

2 Existence of ∂ as a derivation is standard (see e.g. [2], Ch I, §2.8
Extension of derivations).

3 The construction is similar to what is to be found in [21], but in the
noncommutative realm.

2 We now say a word of the construction in [21]

St CDiffAlgk

X A

k{X}

F

f

jX f̂
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Construction of k{X}

3 Construction of k{X} is very similar to that of k〈{X}〉 but
1 It is devoted to the category CDiffAlgk (commutative differential

k-algebras)
2 It uses commutative polynomials i.e. the basic algebra is k[X ×N] (and

not k〈X × N〉) with the same notations ((x , n) = x [n] and x [0] = x).
3 It is the one used for Proposition 2 in Vu’s talk (and, in fact, the

construction can be done using k{X} with Y
[j]
i = Yij and a suitable

ideal).
4 We recall Proposition 2.

Proposition 2

Let F be a differential field with algebraically closed field of constants CF and
L(Y ) = Y (n) + an−1Y

(n−1) + ...+ a1Y
′ + a0Y = 0 be defined over F . Then

there exists a Picard-Vessiot extension L of F for L, that is unique up to
differential F -isomorphism.
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Application: Cartan theorem in Banach algebras (without
transversality nor Lipschitz condition)

See https://mathoverflow.net/questions/356531 for motivation.
Theorem Let B be a Banach algebra (with unit e) and G be a closed
subgroup of B−1 (the group of multiplicative inverses). Let L(G ) be the
tangent space of G and m : I → L(G ) be a continuous function (I ⊂ R is
an open interval containing 0R), then
i) The following system

y ′(t) = m(t)y(t) ; y(0) = e

admits a unique solution, say s(t).
ii) The trajectory of s is entirely in G (in other words t 7→ s(t) is a path
drawn on G ). My questions are the following:
Q1) Is it known? (I expect so, at least of the specialists)
Q2) If yes, is there a sound reference? (not general, but about this very
simple and precise property).
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Magnus and Hausdorff groups

exp(−A)
exp(−B)

exp(A)
exp(B)

1G

The Magnus group is the set of series with constant term 1X∗ , the Hausdorff

(sub)-group, is the group of group-like series for ∆x . These are also Lie

exponentials (here A,B are Lie series and exp(A)exp(B) = exp(H(A,B))).
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About Magnus expansion and Poincaré-Hausdorff
formula/1

Let (C〈{X}〉, ∂) be the differential algebra freely generated by X (a single formal
variable). We define a comultiplication ∆ by asking that all X [k] be primitive note

that ∆ commutes with the derivation. Setting, in Ĉ〈{X}〉, D = ∂(eX )e−X , direct
computation shows that D is primitive and hence a Lie series1, which can
therefore be written as a sum of (evaluations of) Dynkin trees.
On the other hand, the formula

D =
∑

k≥1

1

k!

k−1
∑

l=0

X l (∂X )X k−1−l ·
∑

n≥0

(−X )n

n!
(1)

suggests that all bidegrees, in (X , ∂X ), are of the form [n, 1] and thus, there
exists an univariate series Φ(Y ) =

∑

n≥0 anY
n such that D = Φ(adX )[∂X ].

1Which would be trivial,if we were in C{X} (i.e. X commutes with ∂X , as there
D = ∂(X ), but this is not the case within C〈{X}〉 as shows the computation (1).
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About Magnus expansion and Poincaré-Hausdorff
formula/2

Using left and right multiplications by X (resp. noted g , d), we can
rewrite (1) as

D =
(

∑

k≥1

1

k!

k−1
∑

l=0

g ldk−1−l [∂X ]
)

e−X (2)

but, from the fact that g , d commute, the inner sum
∑k−1

l=0 g ldk−1−l is
ruled out by the the following identity (in C[Y ,Z ], but computed within
C(Y ,Z )) and

k−1
∑

l=0

Y lZ k−1−l =
Y k − Z k

Y − Z
=

(

(Y − Z ) + Z
)k

− Z k

Y − Z
=

k
∑

j=1

(

k

j

)

(Y − Z )jZ k−j
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k−1
∑

l=0

Y lZ k−1−l =
Y k − Z k

Y − Z
=

(

(Y − Z ) + Z
)k

− Z k

Y − Z
=

k
∑

j=1

(

k

j

)

(Y − Z )jZ k−j

(3)
Taking notice that (g − d) = adX and pluging (3) into (1), one gets

D =
(

∑

k≥1

1

k!

k
∑

j=1

(

k

j

)

(adX )
j−1dk−j [∂X ]

)

e−X =

1

adX

(

∑

k≥1

k
∑

j=1

1

j!(r − j)!
(adX )

jdk−j [∂X ]
)

e−X =
eadX − 1

adX
[X ′] (4)

which is Poincaré-Hausdorff formula (of course
eadX − 1

adX
stands for the

substitution of adX in the formal series corresponding to the entire function
ez − 1

z
).
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Free structures without functors and Free differential
objects.
Universal problem without functors: Coproducts.

All here is stated within the same category C.

X
Z

Y

X
∐

Y

f

jX

g

jY

h(f ;g)

Figure: Coproduct (jX , jY ;X
∐

Y ).

(

∀(f , g) ∈ Hom(X ,Z )× Hom(Y ,Z )
)

(

∃! h(f ; g) ∈ Hom(X
∐

Y ,Z )
)

(

h(f ; g) ◦ jX = f and h(f ; g) ◦ jY = g
)

(5)

13 / 23



Coproducts: Sets

All here is stated within the category Set.

X
Z

Y

X ⊔ Y

f

jX

g

jY

h(f ;g)

Figure: Coproduct (jX , jY ;X ⊔ Y ).

(

∀(f , g) ∈ Hom(X ,Z )× Hom(Y ,Z )
)

(

∃! h(f ; g) ∈ Hom(X ⊔ Y ,Z )
)

(

h(f ; g) ◦ jX = f and h(f ; g) ◦ jY = g
)

(6)
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Coproducts: Vector Spaces

All here is stated within the same category k− Vect.

X
Z

Y

X ⊕ Y

f

jX

g

jY

h(f ;g)

Figure: Coproduct (jX , jY ;X ⊕ Y ) here h(f ; g) = f ⊕ g .

(

∀(f , g) ∈ Hom(X ,Z )× Hom(Y ,Z )
)

(

∃! h(f ; g) ∈ Hom(X ⊕ Y ,Z )
)

(

h(f ; g) ◦ jX = f and h(f ; g) ◦ jY = g
)

(7)
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Coproducts: k− CAAU

All here is stated within the same category k− CAAU.

X
Z

Y

X ⊗ Y

f

jX

g

jY

h(f ;g)

Figure: Coproduct (jX , jY ;X ⊗ Y ) here h(f ; g) = f ⊗ g .

(

∀(f , g) ∈ Hom(X ,Z )× Hom(Y ,Z )
)

(

∃! h(f ; g) ∈ Hom(X ⊗ Y ,Z )
)

(

h(f ; g) ◦ jX = f and h(f ; g) ◦ jY = g
)

(8)
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Coproducts: Augmented k− AAU

All here is stated within the same category Augmented k− AAU.

X
Z

Y

X ∗ Y

f

jX

g

jY

h(f ;g)

Figure: Coproduct (jX , jY ;X ∗ Y ) here h(f ; g) = f ∗ g .

(

∀(f , g) ∈ Hom(X ,Z )× Hom(Y ,Z )
)

(

∃! h(f ; g) ∈ Hom(X ∗ Y ,Z )
)

(

h(f ; g) ◦ jX = f and h(f ; g) ◦ jY = g
)

(9)
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Links

1 Categorical framework(s)

https://ncatlab.org/nlab/show/category

https://en.wikipedia.org/wiki/Category_(mathematics)

2 Universal problems

https://ncatlab.org/nlab/show/universal+construction

https://en.wikipedia.org/wiki/Universal_property

3 Paolo Perrone, Notes on Category Theory with examples from basic
mathematics, 181p (2020)
arXiv:1912.10642 [math.CT]

https://en.wikipedia.org/wiki/Abstract_nonsense

4 Heteromorphism

https://ncatlab.org/nlab/show/heteromorphism

5 D. Ellerman, MacLane, Bourbaki, and Adjoints: A Heteromorphic
Retrospective, David EllermanPhilosophy Department, University of
California at Riverside
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Links/2

6 https://en.wikipedia.org/wiki/Category_of_modules

7 https://ncatlab.org/nlab/show/Grothendieck+group

8 Traces and hilbertian operators

https://hal.archives-ouvertes.fr/hal-01015295/document

9 State on a star-algebra

https://ncatlab.org/nlab/show/state+on+a+star-algebra

10 Hilbert module

https://ncatlab.org/nlab/show/Hilbert+module
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